149,288 research outputs found

    Treatment of Reverse Osmosis Brine with Advanced Oxidative Processes for Enhanced Phosphorus Removal

    Get PDF
    Current regulations for sensitive receiving waters are approaching the limit of technology for phosphorus removal and improved methods are required. Existing methods target removal of the orthophosphate form of phosphorus, but to achieve low effluent limits other non-reactive (NRP) forms, such as condensed phosphate and organic phosphorus, must be removed as well. This could be accomplished by developing a quaternary step in wastewater treatment that utilizes reverse osmosis (RO) followed by advanced oxidation processes (AOP) on the produced brine (RO concentrate). The objective during advanced treatment is to convert NRP in the brine to reactive phosphorus for removal by traditional chemical addition methods; however, the various antiscalants utilized for RO membrane maintenance can contribute phosphorus to the brine. To test brine treatment as a viable alternative to achieve low effluent phosphorus, antiscalant-free brine, demonstration facility-produced brine, four commercially available antiscalants and various representative model phosphorus compounds were evaluated for treatment effectiveness. For antiscalant addition experiments the dosage of antiscalant was designed to match the necessary concentration for effective RO membrane maintenance. The advanced oxidation processes evaluated were 100 ppb peroxide for 30 minutes, 50 ppm bleach for 30 minutes, pH 2 for 30 minutes, and 100 ppb peroxide at pH 2 for 30 minutes. The use of chemical addition as a pretreatment was also evaluated. Treatment effectiveness was determined by measuring residual total phosphorus post AOP treatment after a subsequent 6 ppm alum treatment. The use of 30 ppm alum chemical addition as a pretreatment effectively improves the use of AOPs for P removal from 57% up to 73% for a 100 ppb peroxide at pH 2 treated antiscalant free brine. The most effective chemical AOP after a 30 ppm alum pretreatment was 100 ppb peroxide at pH 2 which achieved 73% TP removal for the antiscalant-free brine, 84% TP removal in the demonstration facility produced brine, 66-82% TP removal for the brine amended with the three commercially available antiscalants, and 3-92% TP removal for the various phosphorus standards. A comparison removal using a multiphase treatment which employs UV digestion with 3000 ppm peroxide at pH 2 and 80-90°C for 1 hour was also evaluated and achieved 81-94% TP removal in the two brines and four antiscalant-dosed brines, as well as 73-84% TP removal in the various phosphorus standards. The effectiveness of treatments at converting NRP seems to be bond type dependent, such that phosphate-esters, followed by phospho-esters are the most convertible, whereas phosphonate bonds seem to be resilient to conversion. Therefore RO shows potential for quaternary treatment to achieve low phosphorus levels. The RO brine can concentrate nutrients (whether naturally occurring or contributed by antiscalants), which can be removed by chemical addition as well as via AOP processes

    Stability of Monoterpene-Derived α-Hydroxyalkyl-Hydroperoxides in Aqueous Organic Media: Relevance to the Fate of Hydroperoxides in Aerosol Particle Phases

    Get PDF
    The α-hydroxyalkyl-hydroperoxides [R–(H)C(−OH)(−OOH), α-HH] produced in the ozonolysis of unsaturated organic compounds may contribute to secondary organic aerosol (SOA) aging. α-HHs’ inherent instability, however, hampers their detection and a positive assessment of their actual role. Here we report, for the first time, the rates and products of the decomposition of the α-HHs generated in the ozonolysis of atmospherically important monoterpenes α-pinene (α-P), d-limonene (d-L), γ-terpinene (γ-Tn), and α-terpineol (α-Tp) in water/acetonitrile (W/AN) mixtures. We detect α-HHs and multifunctional decomposition products as chloride adducts by online electrospray ionization mass spectrometry. Experiments involving D₂O and H₂¹⁸O, instead of H₂¹⁶O, and an OH-radical scavenger show that α-HHs decompose into gem-diols + H₂O₂ rather than free radicals. α-HHs decay mono- or biexponentially depending on molecular structure and solvent composition. e-Fold times, τ_(1/e), in water-rich solvent mixtures range from τ_(1/e) = 15–45 min for monoterpene-derived α-HHs to τ_(1/e) > 10³ min for the α-Tp-derived α-HH. All τ_(1/e)’s dramatically increase in <20% (v/v) water. Decay rates of the α-Tp-derived α-HH in pure water increase at lower pH (2.3 ≤ pH ≤ 3.3). The hydroperoxides detected in day-old SOA samples may reflect their increased stability in water-poor media and/or the slow decomposition of α-HHs from functionalized terpenes

    BMP treatment technologies, monitoring needs, and knowledge gaps: status of the knowledge and relevance within the Tahoe Basin

    Get PDF
    This Technical memorandum fulfills Task 2 for Agreement 03-495 between El Dorado County and the Office of Water Programs at California State University Sacramento and their co-authors, Bachand & Associates and the University of California Tahoe Research Group: 1) a review of current stormwater treatment Best Management Practices (BMP) in the Tahoe Basin and their potential effectiveness in removing fine particles and reducing nutrient concentrations; 2) an assessment of the potential for improving the performance of different types of existing BMPs through retrofitting or better maintenance practices; 3) a review of additional promising treatment technologies not currently in use in the Tahoe Basin; and 4) a list of recommendations to help address the knowledge gaps in BMP design and performance. ... (PDF contains 67 pages

    Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador

    Get PDF
    Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador), more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17) with a C/N ratio 25; pile 2: (60:30:10) with C/N ratio 24 and pile 3 (75:0:25) with C/N ratio 33), prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter decomposition, reached in a shorter period of time in pile 3. At the end of the process, all the composts showed absence of phytotoxicity and suitable agronomic properties for their use as organic fertilizers. This reflects the viability of the proposed alternative to be scaled-up in developing areas, not only to manage and recycle urban waste fluxes, but also to obtain organic fertilizers, including added value in economic terms related to nutrient contents.Peer ReviewedPostprint (published version

    Terpenylic Acid and Related Compounds from the Oxidation of α-Pinene: Implications for New Particle Formation and Growth above Forests

    Get PDF
    Novel secondary organic aerosol (SOA) products from the monoterpene α-pinene with unique dimer-forming properties have been identified as lactone-containing terpenoic acids, i.e., terpenylic and 2-hydroxyterpenylic acid, and diaterpenylic acid acetate. The structural characterizations were based on the synthesis of reference compounds and detailed interpretation of mass spectral data. Terpenylic acid and diaterpenylic acid acetate are early oxidation products generated upon both photooxidation and ozonolysis, while 2-hydroxyterpenylic acid is an abundant SOA tracer in ambient fine aerosol that can be explained by further oxidation of terpenylic acid. Quantum chemical calculations support that noncovalent dimer formation involving double hydrogen bonding interactions between carboxyl groups of the monomers is energetically favorable. The molecular properties allow us to explain initial particle formation in laboratory chamber experiments and are suggested to play a role in new particle formation and growth above forests, a natural phenomenon that has fascinated scientists for more than a century

    Dynamic Behaviour of a Continuous Heat Exchanger/Reactor after Flow Failure

    Get PDF
    The intensified technologies offer new prospects for the development of hazardous chemical syntheses in safer conditions: the idea is to reduce the reaction volume by increasing the thermal performances and preferring the continuous mode to the batch one. In particular, the Open Plate Reactor (OPR) type “reactor/ exchanger” also including a modular block structure, matches these characteristics perfectly. The aim of this paper is to study the OPR behaviour during a normal operation, that is to say, after a stoppage of the circulation of the cooling fluid. So, an experiment was carried out, taking the oxidation of sodium thiosulfate with hydrogen peroxide as an example. The results obtained, in particular with regard to the evolution of the temperature profiles of the reaction medium as a function of time along the apparatus, are compared with those predicted by a dynamic simulator of the OPR. So, the average heat transfer coefficient regarding the “utility” fluid is evaluated in conductive and natural convection modes, and then integrated in the simulator. The conclusion of this study is that, during a cooling failure, a heat transfer by natural convection would be added to the conduction, which contributes to the intrinsically safer character of the apparatus

    Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: on-sun proof of concept

    Get PDF
    This paper demonstrates the capacity of dense suspensions of solid particles to transfer concentrated solar power from a tubular receiver to an energy conversion process by acting as a heat transfer fluid. Contrary to a circulating fluidized bed, the dense suspension of particles’ flows operates at low gas velocity and large solid fraction. A single-tube solar receiver was tested with 64 µm mean diameter silicon carbide particles for solar flux densities in the range 200–250 kW/m2, resulting in a solid particle temperature increase ranging between 50 °C and 150 °C. The mean wall-to-suspension heat transfer coefficient was calculated from experimental data. It is very sensitive to the particle volume fraction of the suspension, which was varied from 26 to 35%, and to the mean particle velocity. Heat transfer coefficients ranging from 140 W/m2 K to 500 W/m2 K have been obtained, thus corresponding to a 400 W/m2 K mean value for standard operating conditions (high solid fraction) at low temperature. A higher heat transfer coefficient may be expected at high temperatures because the wall-to-suspension heat transfer coefficient increases drastically with temperature. The suspension has a heat capacity similar to a liquid heat transfer fluid, with no temperature limitation but the working temperature limit of the receiver tube. Suspension temperatures of up to 750 °C are expected for metallic tubes, thus opening new opportunities for high efficiency thermodynamic cycles such as supercritical steam and supercritical carbon dioxide
    corecore